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ABSTRACT

The problem treated in this paper is that of the
evaluation of pressure waves that can be generated by clouds
of explosive gas-air mixtures in a free atmosphere which is
initially at a uniform state. The particular subject of this study
is concerncd with the final stage of the process whaon, following
ignition and initial flame acceleration, the flame acquires the
steady staie of a constant velocity deflagration. Under the
assumption of point, line or plane symmetrical geometry, the
flow field is then self-similar. Theoretical results describing
such flow fields are presented and numerical solutions,obtained
fer a representative case corresponding to a hydrocarbon-air

mixture at normal atmospheric conditions, are given,
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INTRODUCTION

When an explosive gas-air mixture inan unconfined spacc is ignited at
the center, either a flame or a detonation can be, at first, initiated, depending on
the power density of the ignition energy. Under normal circumstances the former:
will then acceleraie reaching soon a steady state of propagation, while the latter
will most likely decay - a process accompanied by the gradual separation of the
reaction zone from the shock front,

tuch phenomena have been studied initially with reference to spherical
detonations, by Manscn (1), Freiwald and Ude (2), Zel'dovich et al, ©) and Leonas(.4)
More recently, the knowledge in this field of study has been greatly enhanced as a
consequence of the availability of modern experimental techniques, notably the use
of the focused giant-pulse laser beam for ignition, as exemplified by the work of
Leefszmd the application of high~frequency response pressure transducers combined
with high resolution optical recording techniques, as illustrated by the studies of
Soloukhin and Oppeaheim (5).

In both cases of ignition, whether it results in a flame or produces in-
itially a detonation wave, the most likely eventual outcome of combustion in air is
the establishment of a steady propagation state where the flame moves at a consiant
speed, acting, in effect, as a deflagration that leaves behind products at rest and
generates ahead a pressure wave which, under proper geometrical conditions, ac-
quires the character of a self-similar blast wave, It is the analysis of this case
that forms the objective of this paper.

Such flow fields were studied by Taylor (6), Sedov ) and Shiken (8),
and discussed in the text of Courant and Friedrichs (9). The analysis presented
here follows, in essence, the technique of the above references; the formulation is,
however, modified to take advantage of the simplificaticw: that can be obtained as a
consequence of our recent studies on the fundamentai v: oerlics of blast wavesglo’ 11)
The results are worked out in detail to yield a full description of the pressure wave

that can be formed by a cloud of a hydrocarbon-air mixture, The possible effects of
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goameiry are taken into account by the consideration of either point=-, line~, or
plane-symmetrical motion, In free space the most probable shape the wave may
take should be encompassed by the point~ and line-symmetrical geometry, so that

the physically realizable case should be bounded by these two solutions,
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The time-space wave diagram of the system is presented in Fig. 1,the
coordinates t and r being measured from the origin where all wave fronts inter-
sect,. The medium into which the leading wave front propagates, state @, as well
as the products of combustion behind the flame, st_ate @, are considered to be at
rest, The flow field to be determined is self-similar, so that the trajectories of
both the deflagration and the front discontinuity aré straight lines, while the gas;
~ dynamic parameters remain invariant along similarity lines x= r/:; . With refer-
ence to Fig, 1, the continuous self-similar flow field is thus associated with the
change of state from @ to @ An equivalent flow field can be generated by a piston
whose path is also shown on thig diagram, It is, in fact, such a piston-driven wave that
" formed the objective of the first paper of Taylor () in the subject of blast waves,
The problem is to-determine the space profiles of the gasdynamic para=-

meters, i.e, the pressure, 0) , density, y , temperature, T, and particle velocity,d ,

that would be established at any point in space in a combustible mixture giving rise
to a deflagration front propagating into the medium immediately ahead of it at a given
burning speed,s . Both-the deﬂagrationé asscciated with a pressure drop, as pre-
scribed by the appropriate Hugoniot curve, as well as constant pressure deflag:ations
are considered in the analysis.,

In a self-similar flow field each particle undergoes the same thermo-
dynamic process, Thisis represented on the pressure-specific volume diagram in
Fig, 2, After compression by the shock front from state@ to state @ represented
by a point lying on the Rankine~Hugoniot curve, RH, the particle undergnes an isen~
tropic compression in the blast wave to state@ immediately ahead oi the deflagration
which, in turn, yields state @ specified by 2 point lying on the appropriate Hugoniot
curve, H, The latter can be either associated with a pressure drop términating at

state @, or it can correspond to a censtant pressure process ending at state @
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SOLUTION

The self—similar flow field of a blast wave can be described most con-

' cisely in terms of the following reduced parameters:

F= F/% and Zgg 7/% d)z where/us 7"53”/2 (1)

Q is the local velocity of sound, while, with reference to Fig. 1, wl=d6/d£ .

The reduced parameters represept the phase plane ccordinates of the
problem, so that its solution is obtained, in essence, by dctermining the appropriate
integral curve which prescribes Z =Z{ F) » Subject to some specific boundary
conditions, The latter are given, cn one siie, by the Rankine-Hugoniot relations
across the shock front and, on the other, by the jump conditions across the-defla-
gration front, yiclding zero particle velocity in the burnt gas region immediately
behind it, The condition of F =1 corresponds to the state at the piston face since
then, at t= fz , one obtains XW,=¢/ , i.e, the piston velocity,XW;, coincides
with the particle velocity, ¥ . In our notation, under such circumstances X=Xp
while U= Up. |

For a blast wave whose front propagates at a constant velocity, /L =1,
If the state of the undisturbed medium is uniform, while the substance is a perfect
gas with constant specific heats, the conservation equations for such self-similar
blast waves can be reduced to a single differential equation governing the solution,

hamely: {10)

digZ _ 2D+ j(,m}(kF)F @)
where 6{109 a D+ JZ

D= Z-(1-F)*

while J =0, 1, 2 for the plane-, line-, and point-symmetrical geometry, respect- ;

ively, and &' is the specific heat ratio,
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Once the integral curve in the phase plane is known, the solution is

completed by the quadrature

dyr
dbgF = " Dz @

while the gas dynamic parameters of the flow field are determined from the

algebraic reldtions

U= We X "

and, since the flow is 1sentrop1c,

| (=Y £ g

‘ , At F=1 Eqs, (2) and (3) become simply:

T e

= dbgF = Jel (0

dgx _ L (7)
dlgF =~ VH

representing then also the governing differential equations for the plane~symmetri-

BRIy ik "

cal case of J =0, The solution in this case is thus obtained immediately by inte-
gration, giving

Z=ZPF2

e e ———

®) j
/Y=X;> F-I

i and
j )

where Z’p’:Z@Fd and /1';9=X@f==1 .
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The solution to the problem is given in terms of a family of integral curves
on the phase plane for which Z and fare the coordinates, Each curve corresponds
" toa fixed value of 4 and Xp . They are shown for the case of }' =1,3, on
Fig, 3, labeled in terms of ; =7 Z » for spherical, cylindrical and plane flow
fields corresponding, respectively, to J =2, 1and 0,
The curves were obtained by the numerical integration of Eq. (2) or,
for J = 0, directly from Eq. (8), starting from the conditions at the piston face,
thatis F=1and Z=2Zp =3/# . They were terminated at the shock front whose

phase plane coordinates are given by

- 2
B= i (l-Y)
and (10)

2 G (- Y (£ ey)

where y= 012/M2= VM? . Eliminating the latter from Zqs. (10) and (11) one ob-

tains for the locus of end points

o \
£, = 27 (FE )7+ %) (11)

representing the equation of the Rankine~Hugoniot curve in the phase plane, The

corresponding initial condition is that of a quiescent atmosphere ahead of the wave,
that is

and Z - '“@2: y (12)
/ v

while the change of the gasdynamic parameters across the front is specified in terms
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1 J’—/+2¢/ (13)

e e

For weak waves the Mach number of the front approaches unity and
there arises a basic difficulty in the integration of the differential equation govern-
ing the structure of the blast wave, This is due to the particular property of the
singularity of the point ~ =0, Z =1 which lies at the intersection of the Rankine-~
Hugoniot curve with the F = 0 axis,corresponding to the condition of M=1 at the
front (10). The prciiem is caused by the fact that the integral curves representing
the blast wave structure intersect the Rankine~Hugoniot curve at a positive slope
that becomes larger for weaker waves, while they have to approach the singularity
at F = 0 with an infinitely negative slope. The consequent rapid change in the deri-
vatives produces queer numerical results which led Taylor ©) initially fo the belief
thalt there may be a lower bound to the solution corresponding to the condition that X
cannot be smaller than a certain value, somewhat between 0,4 and 0.5,

Actually, as it has been indeed observed by Taylor (6>, when the front
Mach number approaches unity, the problem is governed by the acoustic wave equa~
tion and, as it will be demonstrated here, there exists a coniinuous transition be-
tween the acoustic and blast wave domains, so that, in fact, the weak limit does not

exist and X can be =5 small as one pleases,

‘The acoustic wave is described in terms of the velocity potential ,45( I,"é} )

which satisfies the equation

;425" rv af‘/ r ) (14)
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and is related to the particle velocity and pressure, reepectively, as follows

= - 94

ar

PP = f (15)

r
Introducing the similarity variable X=a’—.é‘ , and assuming for the

potential the functional form (ﬁ(!‘, &) = {f{x} , Eq. (14), is transformed into an

ordinary differential equation
o it
x(-x3) 4+ U f'= 0 a6)

while Eq. (15) yields

U=z

e Lu)““ —i[ Fu /Yf(x}] )’[ L8 %‘,ﬂx] o

Integrating Eq. (16), subject to the boundary conditions at the piston
face where

=1/ ~ 0
U=lp=q X5 = - /é—;‘?w-——’,f/xp (18)

and at the front where

p=p at = dit Y

one obtains

m J+I J72
Foo= 4% = = & —x,) (20)
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and

[l’L %M{ﬁy@}]? for j=1

[Z+2 e //+X}]‘;‘/ for j=2

Zu=H8)% .

(21)

The corresponding velocity and pressure profiles can be then express-

ed as

‘; 2 J/
(,(()():/"3{/ (//__ ,\//:z) 2Xp_al

(22)

and %4 I+ Y]-X* for j=1
7-¢: _ . -XP (] (23)

& v X’ / for j=2

The above sct of equations provides a complete description of the

meter X, equivalent to 4 -1z , as it can be verified directly from the defini-

tions of Z and Zp by noting that, for the acoustic wave, y =1 while ¥, .
For the plane-symnietrical case (j = 0) the acoustic wave is identical

to the blast wave corresponding to y =1, one being just a simple limit of ihe other

without any anomaly.

The flame is considered to act as a deflagration, as depicted on Fig, 2.
From the analysis of the thermodynamic processes represented on this diagram,
taking properly into account the dependence of the heat of reaction on the tempera-

ture immediately ahead of the flame,one obtains the relation

IVF LI }Z E a'z(/ ""“F)] /?J‘” 7)(X‘-7:-1) (24)

where m is the molecular weight ratio,

7”J
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In the course of computations the parameters Z[, F; and X; are
evaluated point by point starting from the piston face, The corresponding value of
-\)F can be thercfore detcrmined from Eq. (24) and the position of the flame front is
thus established when it attains the appropriate magnitude for a given combustible
mixture,

The two terms in the square brackets represent, respectively, the two

components of the expression

= Me_y) o 3 (=Y)0-P) ;
VEEY 2 (HB) V% .

where /B'-—:(dj'—/)/(dj'ﬂ)’ while

/_-::-—/-—"

/) [~ 5 (26)

Tor a constant pressure decflagration, VF=\,5' and, consequently, the

- sccond term in the brackets vanishes. If, morcover, the influence of heating in the

blast wave is negligible, Xl'gl:(_g_(/z & { and Eq. (24) is reduced to the asymptotic
! 7.

form

e

Ne

R |
\//) - ,—F;' 27
The value of the parameter F:/;- at the flame front is, under such circumstances, es-
tablished solely on the basis of the value of ’\)F as specified above.

Finally it should be noted that to each point of the integral curve there

corresponds a certain value of the burning speed given by the relation:

S= %We(I-F,] e
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RESULTS

For numerical computations,a typical case of a hydrocarbon-air mix-
" ture initially at N. T, P. conditions was used, Its thermodynamic propertics were

expressed in terms of the following parameters

’VF = Q, =345 /sec . y, =1 atm
Y=y =l =05 = 1.3 f=l=1.2 T =1

Figure 3 represents integral curves on the phase planc togeiher with
the corresponding plot of X=X ( F) . Each is labeled with the appropriate value of
the particular Z =/ ZP . Points corrcspondingf to the flame front are indicated
by triangles. As pointed out before, the transition between the blast wave solution
and the acoustic regime is continuous., At ; = 10‘2 the two are exactly coincident,
For Z > 102 the acoustic solutions become quite accurate, while the numerical
computations for the blast wave get to be very lengthy and, hence, suifer from loss
in ac;:uracy.

To give a complete physical description of the flow fields thus evaluated,
the corresponding particle velocity, temperature and pressure profiles for the spher-
ical case of j = 2 are presented in Figs. 4, 5 and 6, respectively.

Figure 7T gives the burning speed, S , evaluated from Eq, (28), as a
function of VF determined by the use of Eq. (24) for the spherically symmetric
waves, with { as the parameter, The graph is quite general in that it is applicable
to any value of the heat of reaction that may be ascribed to the combustible mixture,
As on the other diagrams, points corresponding to the given substance for which
'\)F =T are denoted by triangles, The burning speed, S , has an upper bound given by
the CJ deflagration limit. It is specified by the condition X3z W,=44 andis repre-

sented on the diagram by the chain-dotted line.
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The most significant physical parameters for all the geometries are
shown in Fig. 8, plotted as a function of Z; » the parameter identifying specific
solutions. This incluflos the burning speed, S » and the flame position, X3' b;)th
referring to a typical hydrocarbon-air mixture that corresponds to VF =17, as
well as the front parameter y= id/Mm2. The latter C‘dliblts most dxstmctly the cffect
of the gcometry on the strength of the wave generatcd by the flame -- the Mach
number increacing considerably from a point- to a planc-symmetrical case for the
same value of S , while the corresponding change in X3 is quite insignificant.

Finally Fig. 9 displays significant pressure levels as a function of the
burning speed S attained in a combustible medium corresponding to \7; =7, For
the same burning speeds, the differences between the three geometries are quite
significant, the plateau of @,:dyz for the plane-symmectrical wave being appre-
ciably higher than the pressure levels in the other two cases. In practice one can

expect such high pressures to be attained whenever the flame froat is well confined,

""as in corridors or tunnels.
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